Escherichia coli

Escherichia coli
Scientific classification
Domain: Bacteria
Phylum: Proteobacteria
Class: Gammaproteobacteria
Order: Enterobacteriales
Family: Enterobacteriaceae
Genus: Escherichia
Species: E. coli
Binomial name
Escherichia coli
(Migula 1895)
Castellani and Chalmers 1919
Synonyms

Bacillus coli communis Escherich 1885

Escherichia coli ( /ˌɛʃɨˈrɪkiə ˈkl/;[1] commonly abbreviated E. coli) is a Gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms (endotherms). Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in humans, and are occasionally responsible for product recalls.[2][3] The harmless strains are part of the normal flora of the gut, and can benefit their hosts by producing vitamin K2,[4] and by preventing the establishment of pathogenic bacteria within the intestine.[5][6]

E. coli and related bacteria constitute about 0.1% of gut flora,[7] and fecal-oral transmission is the major route through which pathogenic strains of the bacterium cause disease. Cells are able to survive outside the body for a limited amount of time, which makes them ideal indicator organisms to test environmental samples for fecal contamination.[8][9] The bacterium can also be grown easily and inexpensively in a laboratory setting, and has been intensively investigated for over 60 years. E. coli is the most widely studied prokaryotic model organism, and an important species in the fields of biotechnology and microbiology, where it has served as the host organism for the majority of work with recombinant DNA.

Contents

History

The genera Escherichia and Salmonella diverged around 102 million years ago (credibility interval: 57–176 mya), which coincides with the divergence of their hosts: the former being found in mammals and the latter in birds and reptiles.[10] This was followed by a split of the escherichian ancestor into five species (E. albertii, E. coli, E. fergusonii, E. hermannii and E. vulneris. The last E. coli ancestor split between 20 and 30 mya.[11]

In 1885, Theodor Escherich, a German pediatrician, first discovered this species in the feces of healthy individuals and called it Bacterium coli commune due to the fact it is found in the colon and early classifications of Prokaryotes placed these in a handful of genera based on their shape and motility (at that time Ernst Haeckel's classification of Bacteria in the kingdom Monera was in place[12]).[13] Bacterium coli was the type species of the now invalid genus Bacterium when it was revealed that the former type species ("Bacterium triloculare") was missing.[14] Following a revision of Bacteria it was reclassified as Bacillus coli by Migula in 1895[15] and later reclassified in the newly created genus Escherichia, named after its original discoverer.[16]

The genus belongs in a group of bacteria informally known as "coliforms", and is a member of the Enterobacteriaceae family ("the enterics") of the Gammaproteobacteria.[17]

Biology and biochemistry

E. coli is Gram-negative, facultative anaerobic and non-sporulating. Cells are typically rod-shaped, and are about 2.0 microns (μm) long and 0.5 μm in diameter, with a cell volume of 0.6 – 0.7 (μm)3.[18][19] It can live on a wide variety of substrates. E. coli uses mixed-acid fermentation in anaerobic conditions, producing lactate, succinate, ethanol, acetate and carbon dioxide. Since many pathways in mixed-acid fermentation produce hydrogen gas, these pathways require the levels of hydrogen to be low, as is the case when E. coli lives together with hydrogen-consuming organisms, such as methanogens or sulphate-reducing bacteria.[20]

Optimal growth of E. coli occurs at 37°C (98.6°F) but some laboratory strains can multiply at temperatures of up to 49°C (120.2°F).[21] Growth can be driven by aerobic or anaerobic respiration, using a large variety of redox pairs, including the oxidation of pyruvic acid, formic acid, hydrogen and amino acids, and the reduction of substrates such as oxygen, nitrate, dimethyl sulfoxide and trimethylamine N-oxide.[22]

Strains that possess flagella are motile. The flagella have a peritrichous arrangement.[23]

E. coli and related bacteria possess the ability to transfer DNA via bacterial conjugation, transduction or transformation, which allows genetic material to spread horizontally through an existing population. This process led to the spread of the gene encoding shiga toxin from Shigella to E. coli O157:H7, carried by a bacteriophage.[24]

Diversity

Escherichia coli encompasses an enormous population of bacteria that exhibit a very high degree of both genetic and phenotypic diversity. Genome sequencing of a large number of isolates of E. coli and related bacteria shows that a taxonomic reclassification would be desirable. However, this has not been done, largely due to its medical importance[25] and Escherichia coli remains one of the most diverse bacterial species: only 20% of the genome is common to all strains.[26] In fact, from the evolutionary point of view, the members of genus Shigella (dysenteriae, flexneri, boydii, sonnei) should be classified as E. coli strains, a phenomenon termed taxa in disguise.[27] Similarly, other strains of E. coli (e.g. the K-12 strain commonly used in recombinant DNA work) are sufficiently different that they would merit reclassification.

A strain is a sub-group within the species that has unique characteristics that distinguish it from other strains. These differences are often detectable only at the molecular level; however, they may result in changes to the physiology or lifecycle of the bacterium. For example, a strain may gain pathogenic capacity, the ability to use a unique carbon source, the ability to take upon a particular ecological niche or the ability to resist antimicrobial agents. Different strains of E. coli are often host-specific, making it possible to determine the source of faecal contamination in environmental samples.[8][9] For example, knowing which E. coli strains are present in a water sample allows researchers to make assumptions about whether the contamination originated from a human, another mammal or a bird.

Serotypes

A common subdivision system of E. coli, but not based on evolutionary relatedness, is by serotype, which is based on major surface antigens (O antigen: part of lipopolysaccharide layer; H: flagellin; K antigen: capsule), e.g. O157:H7)[28] (NB: K-12, the common laboratory strain is not a serotype.)

Genome plasticity

Like all lifeforms, new strains of E. coli evolve through the natural biological processes of mutation, gene duplication and horizontal gene transfer, in particular 18% of the genome of the laboratory strain MG1655 was horizontally acquired since the diverged from Salmonella.[29] In microbiology, all strains of E. coli derive from E. coli K-12 or E. coli B strains. Some strains develop traits that can be harmful to a host animal. These virulent strains typically cause a bout of diarrhea that is unpleasant in healthy adults and is often lethal to children in the developing world.[30] More virulent strains, such as O157:H7 cause serious illness or death in the elderly, the very young or the immunocompromised.[5][30]

Neotype strain

E. coli is the type species of the genus (Escherichia) and in turn Escherichia is the type species of the family Enterobacteriaceae, where it should be noted that the family name does not stem from the genus Enterobacter + "i" (sic.) + "aceae", but from "enterobacterium" + "aceae" (enterobacterium being not a genus, but an alternative trivial name to enteric bacterium).[17][31][32]

The original strain described by Escherich is believed to be lost, consequently a new type strain (neotype) was chosen as a representative: the neotype strain is ATCC 11775, also known as NCTC 9001,[33] which is pathogenic to chickens and has a O1:K1:H7 serotype.[34] However, in most studies either O157:H7 or K-12 MG1655 or K-12 W3110 are used as a representative E.coli.

Recent events

One such E. coli strain, Escherichia coli O104:H4, has been the subject of a bacterial outbreak that began in Germany in May 2011. Certain strains of E. coli are a major cause of foodborne illness. The outbreak started when several people in Germany were infected with enterohemorrhagic E. coli (EHEC) bacteria, leading to hemolytic-uremic syndrome (HUS), a medical emergency that requires urgent treatment. On 30 June 2011 announced the German Bundesinstitut für Risikobewertung (BfR) (Federal Institute for Risk Assessment, a federal, fully legal entity under public law of the Federal Republic of Germany, an institute within the German Federal Ministry of Food, Agriculture and Consumer Protection), that seeds of fenugreek from Egypt were likely the cause of the EHEC outbreak.[35]

Phylogeny of Escherichia coli strains

Phylogeny (inferred evolutionary history) of Escherichia coli based on [26][36][37] Note that four different species of Shigella fall within the same clade as the various Escherichia coli strains, while Escherichia albertii and Escherichia fergusonii both lie outside of the clade that contains E. coli and Shigella sp.


Samonella enterica




E. albertii




E. fergusonii



Group B2


E. coli SE15 (O150:H5. Commensal)



E. coli E2348/69 (O127:H6. Enteropathogenic)




Group D

E. coli UMN026 (O17:K52:H18. Extracellular pathogenic)




E. coli SMS-3-5 (O19:H34. Extracellular pathogenic)



E. coli IAI39 (O7:K1. Extracellular pathogenic)





group E


E. coli EDL933 (O157:H7 EHEC)



E. coli Sakai (O157:H7 EHEC)





E. coli EC4115 (O157:H7 EHEC)



E. coli TW14359 (O157:H7 EHEC)





Shigella


Shigella dysenteriae




Shigella sonnei




Shigella flexineri







Group B1


E. coli E24377A (O139:H28. Enterotoxigenic)






E. coli E110019




E. coli 11368 (O26:H11. EHEC)



E. coli 11128 (O111:H-. EHEC)







E. coli IAI1 O8 (Commensal)



E. coli 53638 (EIEC)





E. coli SE11 (O152:H28. Commensal)



E. coli B7A









E. coli 12009 (O103:H2. EHEC)



E. coli GOS1 (O104:H4 EAHEC) German 2011 outbreak




E. coli E22





E. coli Olso O103



E. coli 55989 (O128:H2. Enteroaggressive)







Group A


E. coli ATCC8739 (O146. Crook's E.coli used in phage work in the 1950s)





E. coli K-12 W3110 (O16. λ⁻ F⁻ "wild type" molecular biology strain)



E. coli K-12 DH10b (O16. high electrocompetency molecular biology strain)



E. coli K-12 DH1 (O16. high chemical competency molecular biology strain)



E. coli K-12 MG1655 (O16. λ⁻ F⁻ "wild type" molecular biology strain)



E. coli BW2952 (O16. competent molecular biology strain)





E. coli 101-1 (O? H?. EAEC)



E. coli B REL606 (O7. high competency molecular biology strain)



E. coli BL21-DE3 (O7. expression molecular biology strain with T7 polymerase for pET system)














♠: E. coli B derived strains (O7. all substrains derive from d'Herelle's "Bacillus coli" strain)

♣: E. coli K-12 derived strains (O16. all substrains derive from Clifton's K-12 strain (λ⁺ F⁺))

Genomes

The first complete DNA sequence of an E. coli genome (laboratory strain K-12 derivative MG1655) was published in 1997. It was found to be a circular DNA molecule 4.6 million base pairs in length, containing 4288 annotated protein-coding genes (organized into 2584 operons), seven ribosomal RNA (rRNA) operons, and 86 transfer RNA (tRNA) genes. Despite having been the subject of intensive genetic analysis for approximately 40 years, a large number of these genes were previously unknown. The coding density was found to be very high, with a mean distance between genes of only 118 base pairs. The genome was observed to contain a significant number of transposable genetic elements, repeat elements, cryptic prophages, and bacteriophage remnants.[38]

Today, over 60 complete genomic sequences of Escherichia and Shigella species are available. Comparison of these sequences shows a remarkable amount of diversity; only about 20% of each genome represents sequences that are present in every one of the isolates, while approximately 80% of each genome can vary among isolates.[26] Each individual genome contains between 4,000 and 5,500 genes, but the total number of different genes among all of the sequenced E. coli strains (the pan-genome) exceeds 16,000. This very large variety of component genes has been interpreted to mean that two-thirds of the E. coli pan-genome originated in other species and arrived through the process of horizontal gene transfer.[39]

Role as normal microbiota

E. coli normally colonizes an infant's gastrointestinal tract within 40 hours of birth, arriving with food or water or with the individuals handling the child. In the bowel, it adheres to the mucus of the large intestine. It is the primary facultative anaerobe of the human gastrointestinal tract.[40] (Facultative anaerobes are organisms that can grow in either the presence or absence of oxygen.) As long as these bacteria do not acquire genetic elements encoding for virulence factors, they remain benign commensals.[41]

Therapeutic use of nonpathogenic E. coli

Nonpathogenic Escherichia coli strain Nissle 1917 also known as Mutaflor is used as a probiotic agent in medicine, mainly for the treatment of various gastroenterological diseases,[42] including inflammatory bowel disease.[43]

Role in disease

Virulent strains of E. coli can cause gastroenteritis, urinary tract infections, and neonatal meningitis. In rarer cases, virulent strains are also responsible for hemolytic-uremic syndrome, peritonitis, mastitis, septicemia and Gram-negative pneumonia.[40]

Model organism in life science research

Role in biotechnology

Because of its long history of laboratory culture and ease of manipulation, E. coli also plays an important role in modern biological engineering and industrial microbiology.[44] The work of Stanley Norman Cohen and Herbert Boyer in E. coli, using plasmids and restriction enzymes to create recombinant DNA, became a foundation of biotechnology.[45]

Considered a very versatile host for the production of heterologous proteins,[46] researchers can introduce genes into the microbes using plasmids, allowing for the mass production of proteins in industrial fermentation processes. Genetic systems have also been developed which allow the production of recombinant proteins using E. coli. One of the first useful applications of recombinant DNA technology was the manipulation of E. coli to produce human insulin.[47] Modified E. coli cells have been used in vaccine development, bioremediation, and production of immobilised enzymes.[46] E. coli cannot, however, be used to produce some of the larger, more complex proteins which contain multiple disulfide bonds and, in particular, unpaired thiols, or proteins that also require post-translational modification for activity.[44]

Studies are also being performed into programming E. coli to potentially solve complicated mathematics problems, such as the Hamiltonian path problem.[48]

Model organism

E. coli is frequently used as a model organism in microbiology studies. Cultivated strains (e.g. E. coli K12) are well-adapted to the laboratory environment, and, unlike wild type strains, have lost their ability to thrive in the intestine. Many lab strains lose their ability to form biofilms.[49][50] These features protect wild type strains from antibodies and other chemical attacks, but require a large expenditure of energy and material resources.

In 1946, Joshua Lederberg and Edward Tatum first described the phenomenon known as bacterial conjugation using E. coli as a model bacterium,[51] and it remains the primary model to study conjugation. E. coli was an integral part of the first experiments to understand phage genetics,[52] and early researchers, such as Seymour Benzer, used E. coli and phage T4 to understand the topography of gene structure.[53] Prior to Benzer's research, it was not known whether the gene was a linear structure, or if it had a branching pattern.

E. coli was one of the first organisms to have its genome sequenced; the complete genome of E. coli K12 was published by Science in 1997.[54]

The long-term evolution experiments using E. coli, begun by Richard Lenski in 1988, have allowed direct observation of major evolutionary shifts in the laboratory.[55] In this experiment, one population of E. coli unexpectedly evolved the ability to aerobically metabolize citrate, which is extremely rare in E. coli. As the inability to grow aerobically is normally used as a diagnostic criterion with which to differentiate E. coli from other, closely related bacteria, such as Salmonella, this innovation may mark a speciation event observed in the lab.

By evaluating the possible combination of nanotechnologies with landscape ecology, complex habitat landscapes can be generated with details at the nanoscale.[56] On such synthetic ecosystems, evolutionary experiments with E. coli have been performed to study the spatial biophysics of adaptation in an island biogeography on-chip.

See also

References

  1. ^ "coli". Oxford English Dictionary. Oxford University Press. 2nd ed. 1989.
  2. ^ "Escherichia coli O157:H7". CDC Division of Bacterial and Mycotic Diseases. http://www.cdc.gov/nczved/divisions/dfbmd/diseases/ecoli_o157h7/. Retrieved 2011-04-19. 
  3. ^ Vogt RL, Dippold L (2005). "Escherichia coli O157:H7 outbreak associated with consumption of ground beef, June–July 2002". Public Health Rep 120 (2): 174–8. PMC 1497708. PMID 15842119. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1497708. 
  4. ^ Bentley R, Meganathan R (1 September 1982). "Biosynthesis of vitamin K (menaquinone) in bacteria". Microbiol. Rev. 46 (3): 241–80. PMC 281544. PMID 6127606. http://mmbr.asm.org/cgi/pmidlookup?view=long&pmid=6127606. 
  5. ^ a b Hudault S, Guignot J, Servin AL (July 2001). "Escherichia coli strains colonizing the gastrointestinal tract protect germ-free mice against Salmonella typhimurium infection". Gut 49 (1): 47–55. doi:10.1136/gut.49.1.47. PMC 1728375. PMID 11413110. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1728375. 
  6. ^ Reid G, Howard J, Gan BS (September 2001). "Can bacterial interference prevent infection?". Trends Microbiol. 9 (9): 424–428. doi:10.1016/S0966-842X(01)02132-1. PMID 11553454. 
  7. ^ Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L et al. (2005). "Diversity of the human intestinal microbial flora". Science 308 (5728): 1635–1638. doi:10.1126/science.1110591. PMC 1395357. PMID 15831718. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1395357. 
  8. ^ a b Feng P, Weagant S, Grant, M (2002-09-01). "Enumeration of Escherichia coli and the Coliform Bacteria". Bacteriological Analytical Manual (8th ed.). FDA/Center for Food Safety & Applied Nutrition. http://www.cfsan.fda.gov/~ebam/bam-4.html. Retrieved 2007-01-25. 
  9. ^ a b Thompson, Andrea (2007-06-04). "E. coli Thrives in Beach Sands". Live Science. http://www.livescience.com/health/070604_beach_ecoli.html. Retrieved 2007-12-03. 
  10. ^ Battistuzzi, F. U.; Feijao, A.; Hedges, S. B. (2004). "A genomic timescale of prokaryote evolution: insights into the origin of methanogenesis, phototrophy, and the colonization of land". BMC Evolutionary Biology 4: 44. doi:10.1186/1471-2148-4-44. PMC 533871. PMID 15535883. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=533871.  edit
  11. ^ Lecointre, G.; Rachdi, L.; Darlu, P.; Denamur, E. (1998). "Escherichia coli molecular phylogeny using the incongruence length difference test". Molecular biology and evolution 15 (12): 1685–1695. PMID 9866203.  edit
  12. ^ Haeckel, Ernst (1867). Generelle Morphologie der Organismen. Reimer, Berlin. ISBN 1144001862. 
  13. ^ Escherich T (1885). "Die Darmbakterien des Neugeborenen und Säuglinge". Fortschr. Med. 3: 515–522. http://books.google.com/books?id=o1MXAAAAYAAJ&lpg=PA135&ots=bK-aUAaiEJ&dq=%22Die%20darmbakterien%20des%20neugeborenen%20und%20säuglings%22&pg=PA135#v=onepage&q=%22Die%20darmbakterien%20des%20neugeborenen%20und%20säuglings%22&f=false. 
  14. ^ Breed, R.; Conn, H. (1936). "The Status of the Generic Term Bacterium Ehrenberg 1828". Journal of bacteriology 31 (5): 517–518. PMC 543738. PMID 16559906. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=543738.  edit
  15. ^ MIGULA (W.): Bacteriaceae (Stabchenbacterien). In: A. ENGLER and K. PRANTL (eds): Die Naturlichen Pfanzenfamilien, W. Engelmann, Leipzig, Teil I, Abteilung Ia, 1895, pp. 20–30.
  16. ^ CASTELLANI (A.) and CHALMERS (A.J.): Manual of Tropical Medicine, 3rd ed., Williams Wood and Co., New York, 1919.
  17. ^ a b George M. Garrity, ed (July 26, 2005) [1984(Williams & Wilkins)]. The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology. 2B (2nd ed.). New York: Springer. pp. 1108. ISBN 978-0-387-24144-9. British Library no. GBA561951. http://www.springer.com/life+sciences/book/978-0-387-24144-9. 
  18. ^ "Facts about E. coli: dimensions, as discussed in bacteria: Diversity of structure of bacteria: – Britannica Online Encyclopedia". Britannica.com. http://www.britannica.com/facts/5/463522/E-coli-as-discussed-in-bacteria. Retrieved 2011-06-05. 
  19. ^ Kubitschek HE (1 January 1990). "Cell volume increase in Escherichia coli after shifts to richer media". J. Bacteriol. 172 (1): 94–101. PMC 208405. PMID 2403552. http://jb.asm.org/cgi/pmidlookup?view=long&pmid=2403552. 
  20. ^ Madigan MT, Martinko JM (2006). Brock Biology of microorganisms (11th ed.). Pearson. ISBN 0-13-196893-9. 
  21. ^ Fotadar U, Zaveloff P, Terracio L (2005). "Growth of Escherichia coli at elevated temperatures". J. Basic Microbiol. 45 (5): 403–4. doi:10.1002/jobm.200410542. PMID 16187264. 
  22. ^ Ingledew WJ, Poole RK (1984). "The respiratory chains of Escherichia coli". Microbiol. Rev. 48 (3): 222–71. PMC 373010. PMID 6387427. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=373010. 
  23. ^ Darnton, N. C.; Turner, L.; Rojevsky, S.; Berg, H. C. (2006). "On torque and tumbling in swimming Escherichia coli". J Bacteriol. 189 (5): 1756–1764. doi:10.1128/JB.01501-06. PMC 1855780. PMID 17189361. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1855780. 
  24. ^ Brüssow H, Canchaya C, Hardt WD (September 2004). "Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion". Microbiol. Mol. Biol. Rev. 68 (3): 560–602. doi:10.1128/MMBR.68.3.560-602.2004. PMC 515249. PMID 15353570. http://mmbr.asm.org/cgi/pmidlookup?view=long&pmid=15353570. 
  25. ^ Krieg, N. R.; Holt, J. G., eds (1984). Bergey's Manual of Systematic Bacteriology. 1 (First ed.). Baltimore: The Williams & Wilkins Co. pp. 408–420. ISBN 0683041088. 
  26. ^ a b c Lukjancenko, O.; Wassenaar, T.M.; Ussery, D.W. (2010). "Comparison of 61 sequenced Escherichia coli genomes". Microb Ecol. 60 (4): 708–720. doi:10.1007/s00248-010-9717-3. PMC 2974192. PMID 20623278. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2974192. 
  27. ^ Lan, R.; Reeves, P.R. (2002). "Escherichia coli in disguise: molecular origins of Shigella". Microbes Infect. 4 (11): 1125–1132. doi:10.1016/S1286-4579(02)01637-4. PMID 12361912. 
  28. ^ Orskov, I.; Orskov, F.; Jann, B.; Jann, K. (1977). "Serology, chemistry, and genetics of O and K antigens of Escherichia coli". Bacteriol Rev. 41 (3): 667–710. PMC 414020. PMID 334154. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=414020. 
  29. ^ Lawrence, J. G.; Ochman, H. (1998). "Molecular archaeology of the Escherichia coli genome". PNAS 95 (16): 9413–9417. doi:10.1073/pnas.95.16.9413. JSTOR 45488. PMC 21352. PMID 9689094. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=21352. 
  30. ^ a b Nataro JP, Kaper JB (January 1998). "Diarrheagenic Escherichia coli". Clin. Microbiol. Rev. 11 (1): 142–201. PMC 121379. PMID 9457432. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=121379. 
  31. ^ Discussion of nomenclature of Enterobacteriaceae entry in LPSN [Euzéby, J.P. (1997). "List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet". Int J Syst Bacteriol 47 (2): 590-2. doi:10.1099/00207713-47-2-590. ISSN 0020-7713. PMID 9103655. http://ijs.sgmjournals.org/cgi/reprint/47/2/590. ]
  32. ^ International Bulletin of Bacteriological Nomenclature and Taxonomy 8:73–74 (1958)
  33. ^ "Escherichia". bacterio.cict.fr. http://www.bacterio.cict.fr/e/escherichia.html. 
  34. ^ "Escherichia coli (Migula 1895) Castellani and Chalmers 1919". JCM Catalogue. http://www.jcm.riken.go.jp/cgi-bin/jcm/jcm_number?JCM=1649. 
  35. ^ "Samen von Bockshornklee mit hoher Wahrscheinlichkeit für EHEC O104:H4 Ausbruch verantwortlich in English: Fenugreek seeds with high probability for EHEC O104: H4 responsible outbreak" (in German) (PDF). Bundesinstitut für Risikobewertung (BfR) in English: Federal Institute for Risk Assessment. 30 June 2011. http://www.bfr.bund.de/cm/343/samen_von_bockshornklee_mit_hoher_wahrscheinlichkeit_fuer_ehec_o104_h4_ausbruch_verantwortlich.pdf. Retrieved 17 July 2011. 
  36. ^ Sims, G. E.; Kim, S. -H. (2011). "Whole-genome phylogeny of Escherichia coli/Shigella group by feature frequency profiles (FFPs)". Proceedings of the National Academy of Sciences 108 (20): 8329. doi:10.1073/pnas.1105168108.  edit
  37. ^ Brzuszkiewicz, E.; Thürmer, A.; Schuldes, J. R.; Leimbach, A.; Liesegang, H.; Meyer, F. D.; Boelter, J. R.; Petersen, H. et al. (2011). "Genome sequence analyses of two isolates from the recent Escherichia coli outbreak in Germany reveal the emergence of a new pathotype: Entero-Aggregative-Haemorrhagic Escherichia coli (EAHEC)". Archives of Microbiology. doi:10.1007/s00203-011-0725-6.  edit
  38. ^ Blattner, F. R.; Plunkett, G.; Bloch, C. A.; Perna, N. T.; Burland, V.; Riley, M.; Collado-vides, J.; Glasner, J. D. et al. (1997). "The Complete Genome Sequence of Escherichia coli K-12". Science 277 (5331): 1453–62. doi:10.1126/science.277.5331.1453. PMID 9278503.  edit
  39. ^ Zhaxybayeva, O.; Doolittle, W. F. (2011). "Lateral gene transfer". Current Biology 21 (7): R242–R246. doi:10.1016/j.cub.2011.01.045. PMID 21481756.  edit
  40. ^ a b Todar, K.. "Pathogenic E. coli". Online Textbook of Bacteriology. University of Wisconsin–Madison Department of Bacteriology. http://www.textbookofbacteriology.net/e.coli.html. Retrieved 2007-11-30. 
  41. ^ Evans Jr., Doyle J.; Dolores G. Evans. "Escherichia Coli". Medical Microbiology, 4th edition. The University of Texas Medical Branch at Galveston. Archived from the original on 2007-11-02. http://web.archive.org/web/20071102062813/http://www.gsbs.utmb.edu/microbook/ch025.htm. Retrieved 2007-12-02. 
  42. ^ Grozdanov, L; Raasch, C; Schulze, J; Sonnenborn, U; Gottschalk, G; Hacker, J; Dobrindt, U (August 2004). "Analysis of the genome structure of the nonpathogenic probiotic Escherichia coli strain Nissle 1917". J Bacteriol 186 (16): 5432–5441. doi:10.1128/JB.186.16.5432-5441.2004. PMC 490877. PMID 15292145. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=490877. 
  43. ^ Kamada, N; Inoue, N; Hisamatsu, T; Okamoto, S; Matsuoka, K; Sato, T; Chinen, H; Hong, KS et al. (May 2005). "Nonpathogenic Escherichia coli strain Nissle1917 prevents murine acute and chronic colitis". Inflamm Bowel Dis 11 (5): 455–463. doi:10.1097/01.MIB.0000158158.55955.de. PMID 15867585. 
  44. ^ a b Lee SY (1996). "High cell-density culture of Escherichia coli". Trends Biotechnol. 14 (3): 98–105. doi:10.1016/0167-7799(96)80930-9. PMID 8867291. 
  45. ^ Russo E (January 2003). "The birth of biotechnology". Nature 421 (6921): 456–457. doi:10.1038/nj6921-456a. PMID 12540923. http://www.nature.com/nature/journal/v421/n6921/full/nj6921-456a.html. 
  46. ^ a b Cornelis P (2000). "Expressing genes in different Escherichia coli compartments". Curr. Opin. Biotechnol. 11 (5): 450–454. doi:10.1016/S0958-1669(00)00131-2. PMID 11024362. 
  47. ^ Tof, Ilanit (1994). "Recombinant DNA Technology in the Synthesis of Human Insulin". Little Tree Pty. Ltd.. http://www.littletree.com.au/dna.htm. Retrieved 2007-11-30. 
  48. ^ "E.coli can solve math problems". The Deccan Chronicle. July 26, 2009. http://www.deccanchronicle.com/international/ecoli-can-solve-math-problems-088. Retrieved July 26, 2009. 
  49. ^ Fux CA, Shirtliff M, Stoodley P, Costerton JW (2005). "Can laboratory reference strains mirror "real-world" pathogenesis?". Trends Microbiol. 13 (2): 58–63. doi:10.1016/j.tim.2004.11.001. PMID 15680764. 
  50. ^ Vidal O, Longin R, Prigent-Combaret C, Dorel C, Hooreman M, Lejeune P (1998). "Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression". J. Bacteriol. 180 (9): 2442–9. PMC 107187. PMID 9573197. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=107187. 
  51. ^ Lederberg, Joshua; E.L. Tatum (October 19 1946). "Gene recombination in E. coli" (PDF). Nature 158 (4016): 558. doi:10.1038/158558a0. http://profiles.nlm.nih.gov/BB/G/A/S/Z/_/bbgasz.pdf.  Source: National Library of Medicine – The Joshua Lederberg Papers
  52. ^ "The Phage Course – Origins". Cold Spring Harbor Laboratory. 2006. http://www.cshl.edu/History/phagecourse.html. Retrieved 2007-12-03. 
  53. ^ Benzer, Seymour (March 1961). "On the topography of the genetic fine structure". PNAS 47 (3): 403–15. Bibcode 1961PNAS...47..403B. doi:10.1073/pnas.47.3.403. PMC 221592. PMID 16590840. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=221592. 
  54. ^ Frederick R. Blattner, Guy Plunkett III, Craig Bloch, Nicole Perna, Valerie Burland, Monica Riley, Julio Collado-Vides, Jeremy Glasner, Christopher Rode, George Mayhew, Jason Gregor, Nelson Davis, Heather Kirkpatrick, Michael Goeden, Debra Rose, Bob Mau, Ying Shao (September 5 1997). "The complete genome sequence of Escherichia coli K-12". Science 277 (5331): 1453–1462. doi:10.1126/science.277.5331.1453. PMID 9278503. 
  55. ^ Bacteria make major evolutionary shift in the lab New Scientist
  56. ^ Keymer J.E., P. Galajda, C. Muldoon R., and R. Austin (November 2006). "Bacterial metapopulations in nanofabricated landscapes". PNAS 103 (46): 17290–295. Bibcode 2006PNAS..10317290K. doi:10.1073/pnas.0607971103. 

External links

Databases